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Abstract. For the uniform asymptotic expansion of certain types of contour integrals, one 
of whose critical points is an endpoint of the interval of integration, a method alternative 
to Bleistein's is introduced and numerically tested by way of a non-trivial physical example. 

The analysis of a variety of physical problems eventually requires the suitable approxi- 
mation of contour integrals of the form 

d 5, (1) 
i w F ( c ; o )  

I ( w ;  a; so) = f(5; a) e 1, 
for o + CO, where for all admissible values of the set of real parameters a,f( 5; a) and 
F ( 5 ;  a) are analytic functions along the contour of integration C, which has at least 
one finite endpoint lo. The other endpoint is either also finite, or it is, more frequently, 
at infinity. Numerous applications require that f(5; a) and F ( 5 ;  a) be allowed to be 
multivalued and to be given on multisheet Riemann surfaces, on which an appropriate 
arrangement of branch cuts is assumed to have been fixed. In these cases, the second 
endpoint may also be a branch point of the integrand. When the second endpoint is 
not a regular finite point, we assume that Re[iF(J; a)]+ -a as that endpoint is 
approached along C. 

It is well known that the behaviour of (1) for large values of w depends crucially 
on the number, type and distribution of the so-called 'critical points' of its integrand 
(Bleistein and Handelsman 1975). One such configuration that has emerged particularly 
frequently in the analysis of physical problems comprises, apart from the endpoint of 
integration lo, two simple saddle points of F at l,,, n = 1,2,  so that 

[WI; ~ ) / d 5 l l < "  = 0. (2) 
Since in all physical applications F is real for real 5 and a, we may infer from Schwarz's 
reflection principle, 

F ( 5 * ;  a) = F * ( l ;  a), (3) 
that the saddle points appear as a complex conjugate pair, 

5, = s: = ss (4) 
As a varies, these two saddle points are allowed to coalesce and to approach indefinitely 
the endpoint of integration Lo. 
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The necessity of finding uniform asymptotic approximations to the integral ( 1 )  
under the specifications just given has arisen in a number of optical diffraction problems 
in the short wavelength limit (Levey and Felsen 1969, Orlov 1975, 1976), in acoustical 
diffraction problems in the short wavelength limit (Marston and Langley 1983), in the 
study of the long time limit of the propagation and compression of FM pulses in 
dispersive media (Felsen 1971) and in the investigation of the long time effect of small 
random perturbations on deterministic systems with two stable nodes and one saddle 
point as their stationary states (Mangel 1979). Recently, a generalised version of this 
problem, where more than one pair of saddle points may coalesce with the endpoint 
of integration lo, has appeared in the accurate determination of the spectral and angular 
distribution of synchrotron radiation emitted from planar strong field wigglers with 
arbitrary field variation (Leubner and Ritsch 1985). 

The now standard method of deriving uniform asymptotic approximations to 
integrals of the type ( 1 )  was introduced by Bleistein (1967), and subsequently refined 
by Ursell (1972). It consists of two steps (Bleistein and Handelsman 1975). The first 
of these is the local transformation of ( 1 )  to the so-called canonical form by means 
of the mapping 

i F ( l ;  a) = P ( Z ;  z!”), 

P(  z; 2,) = f Z 3  - z:z + y, 

( 5 )  

(6) 

where in the case at hand P is suitably chosen as a polynomial of degree three, 

with its two real saddle points at i z ,  being the images of the original saddle points at 
l,, l,* under the mapping (6). From (3) and (4), we immediately find 

z, = { t  Im[ ~ ( 5 , ;  a)]}1’3 

and 

y = i Re[ F( l , ;  a)]. 

(More detailed discussions of this mapping can be found, for example, in Chester et 
a1 (1957) and Bleistein and Handelsman (1975), and for two coalescing pairs of saddle 
points in Leubner (1981) and Connor er al (1984).) The integral ( 1 )  then becomes 

where C, is the (local) image of the original contour C, extending from z,-being the 
image of lo under (6)-to infinity, the latter fact being a consequence of our assumption 
on the behaviour of Re[ F (  5; a)] along the contour C. 

In a second step, Bleistein (1967) expands 

f(l; a) d l /dz=a ,+  b,z+(dP/dz)g,(z). (8) 
Upon insertion into (7), this allows us to integrate by parts, 

where 

r n  = 1 zn ewp dz, n = 0 , 1 ,  
C ,  
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are called the canonical integrals for the problem in hand, which are here incomplete 
Airy functions (Levey and Felsen 1969). Next, one expands 

and, continuing as above, one arrives at an asymptotic expansion of ( l ) ,  as Bleistein 
(1967) and Ursell (1972) have shown. 

This is the method invoked in the work of Levey and Felsen (1969), which in turn 
has been cited in all the physical applications listed above. 

However, for a number of reasons it is worthwhile to point out that there exists 
an alternative method for the derivation of the asymptotic expansion in question, 
which does not seem to have been given before. 

What we are looking for is an appropriate series expansion of the left-hand side 
of (8), analogous to the series expansion employed by Chester et a1 (1957) in their 
pioneering work, where for zo+ 00 they used 

dgo(z)/dz= a l+b lz+g l (z )  dP/dz, 

The point is that while Bleistein's (1967) method is perfectly suited for demonstrating 
that with its help one indeed obtains an asymptotic expansion of (7), the advantage 
of a series expansion of the form ( 1  1 )  is that the process of determining the expansion 
coefficients and that of repeatedly integrating by parts are completely separated. If 
higher terms of the pertinent asymptotic expansion are required, this facilitates the 
implementation of this alternative approach on a computer, which is a point of great 
practical importance since the determination of higher terms of an asymptotic series 
tends to become rather involved (Dingle 1973, Leubner 1981). 

Although Levey and Felsen (1969) claim to have made use of the series ( 1 1 )  in 
deriving the leading terms of the asymptotic expansion (9) ,  they have in fact not done 
so, and could not have, because in the case at hand this series would be inadequate. 
This can be immediately inferred from the fact that the function go(z), appearing in 
(8) and in the lowest-order part of (9), involves coefficients of ( 1  1 )  to arbitrarily high 
order. In contrast, an adequate series expansion of the left-hand side of ( 1  1 )  must be 
such that a certain order of the corresponding asymptotic series involves only a finite 
number of its coefficients. 

For the currently considered case of a single pair of saddle points that can coalesce 
with lo, such a series expansion is provided by 

If, on the other hand, we had to take account of four saddle points that could coalesce 
with lo, P on the right-hand side of ( 5 )  would be of degree five (Leubner 1981, Connor 
et a1 1984), and (12) would have to be replaced by 

+ 0, (z - z0)3 + E,( z - z0)'][ (z - zo) d Pldz]", (13) 
with suitable generalisations of (13 )  applying for other saddle point configurations of 
interest. 

Returning to (12), we first observe that, in view of 

d P / d z = ( z  - z ~ ) ~ + ~ z ~ ( z - z ~ ) + ( z ~ - z ~ )  (14) 
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being a polynomial of degree two in ( z  - zo), both the expansions (1 1) and (12) are 
just particular rearrangements of the Taylor series off([; cu)(dl/dz) around zo, which 
by assumption exists in some neighbourhood of this point. But, as an essential 
difference, we note that the factor [ ( z - z O )  dP/dz]"  in the nth term of (12) permits, 
after insertion of (12) into (7), a certain number m n of successive integrations by 
parts, where, in contrast to an analogous procedure based on (1 l ) ,  the integrated term 
vanishes at both ends of the contour of integration. Since each integration by parts 
multiplies the nth term by a factor of U - ' ,  this term contributes at most to order 
O(o-") to the resulting asymptotic series. For example, it is easy to show that the 
third term of (12) permits two overall integrations by parts and thus contributes at 
most to order O(w-* ) .  We further note that, whenever ( Z - Z ~ ) ~  occurs, it can be 
expressed through (14), so that the asymptotic series stemming from (12) also involves 
only the two canonical integrals (10) that we encountered in the above sketch of 
Bleistein's (1967) method. 

Explicitly, we find up to order O ( w - * )  by the method described 

Z ( W ;  a ;  5 0 )  I'o{Ao - z~BO+ ( z;+ z:) CO+ U - ' [  -AI + 2zOBl - 3( z:+ ~ f )  CI 

+ ~z , ( z ;+  Z: - 1)A, - 2(~:+  3z;z: - Z;  - z:)B~ 

+ ~ z ~ ( z ~ + ~ z ~ z ~ +  ~; ' -~:-3zf)C,]]  

+r ,{B0-2~oCo+o- ' [ -2Bl+6~oC, -2(z;+zf)A, 

+ 2 ~ 0 (  z;+ 3zI )B2 - 2(~:+  62;~: + z:) CJ) 

+ [e"'p(zo)/w] {-CO+ w - ' [ 3 C 1  - 2zoA2 + 2(&+ z3B2 

- ~ Z O ( Z ; + ~ Z ~ ) C ~ I I ,  (15) 

which, as it should be, can be shown to be identical with the expansion following from 
Bleistein's (1967) method. 

In a particular application of ( 1 3 ,  any triple of coefficients A,,, B,, C, in (12) is 
found by differentiating (12) n times with respect to z, and then setting z = zO, z = z ,  
and z = - zs ,  respectively, with a straightforward modification applying in the degenerate 
case zo = z ,  = 0. 

The numerical accuracy of the expansion (15) and of its generalisations to more 
complicated saddle point configurations was thoroughly tested by way of the class of 
integrals 

which arose in the quoted investigation (Leubner and Ritsch 1985). 
These integrals involve the (non-vanishing component of the) vector potential p (  [) 

of the particular (planar) wiggler-magnet arrangement under consideration, the injec- 
tion velocity pas 1 of the relativistic electron beam along the wiggler axis, and the 
direction (n,, n,, n3) = (cos 4 sin 8, sin 4 sin 8, cos 8 )  under which the synchrotron sig- 
nal is observed. In the argument of the exponential, that branch of the square root 
must be taken that is real and positive for a real and positive radicand. The contour 
C depends on both p ( [ )  and the set of parameters chosen, and is specified as that 
path extending from the origin of the 5 plane (that is, lo = 0) along which Im[iF([; a ) ]  
remains constant, and Re[iF( [; a ) ]  is (monotonically) decreasing. 
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For two reasons the integrals (16) are ideally suited for demonstrating the usefulness 
of asymptotic expansions of the type (15) in general, and the need for expansions 
beyond the leading terms in particular. Firstly, the argument iwF( 5 ;  a) of the exponen- 
tial in (16) is itself an integral that cannot be expressed in terms of standard functions 
in all cases of physical interest except the one considered in (18) below. As a 
consequence, the asymptotic expansion ( 15) and its generalisations to more complicated 
saddle point configurations are not only considerably easier to evaluate than the original 
expression (16), but they also furnish a much better insight into the dependence of 
(16) on its parameters. Secondly, the value of Z ( w ;  a; 0) is required for such a range 
of the parameter w that an approximation by only the leading terms of its asymptotic 
expansion would be insufficient. In physical terms, this corresponds to the fact that 
one wants to predict the synchrotron spectrum for all frequencies that are radiated 
with appreciable intensity, and these range from relatively small to very large values 
of w. 

From (5), the saddle points of F in (16) are determined by 

where yo= (1 - has been used. As is to be expected from ( 3 )  and (4), they 
appear in complex conjugate pairs, but the number of pairs and their mutual arrange- 
ment depends on the choice of the vector potential p ( 5 ) .  

In the simplest possible case, this function is chosen as 

with L being the length of one wiggler segment, and the constant I K ]  being small 
compared with Po for a realistic experiment. There is only one pair of saddle points, 
the positions 5, and 5: of which are given by (L/ IKI)  times the right-hand side of (17). 
Inspection reveals that for the physically interesting case of n3 > 0, where we observe 
the synchrotron signal at acute angles with respect to the relativistic electron beam, 
they are situated on the sheet that also contaiiis the contour of integration C. For 
n3 + 0+, they approach opposite lips of the branch cut stemming from the square root 
in the exponent of (16), and they move across the cut into the lower sheet for n3 
turning negative. Since nl = n2=0 and L / ( ~ K ~ Y , , ) < <  1 are admissible (and physically 
interesting) parameter ranges, it is obvious that the pair of saddle points may indefinitely 
approach the endpoint l O = O  of the contour of integration. For a typical set of 
parameters, figure l ( a )  shows the ( p -  and parameter-dependent) contour C, the 
location of the two saddle points and the two branch points with an appropriate choice 
of the corresponding branch cuts. 

Table 1 compares the errors committed by representing (16), with the choice (18 )  
of the vector potential, by only the leading terms of its asymptotic expansion (that is, 
up to O(u-')), and by the approximation (15) (that is, up to O ( W - ~ ) ) ,  respectively, 
relative to a high precision numerical integration of (16) as it stands. In view of the 
many parameters that could be varied in this integral, it was of course necessary to 
restrict the table to the results of a small sample, but checks for a great variety of other 
such combinations showed the corresponding errors to follow pretty much the same 
pattern. 

Table 1 reflects two important points. The first of these is to be expected, namely, 
that for all values of w shown, the expansion (15) brings about a considerably better 
approximation to the integral (16) than that furnished by merely the leading terms of 
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Figure 1. ( a )  Saddle points 5, and l:, branch points tb and -tbr and corresponding branch 
cuts of F ( 3 ;  a), and contour of integration C, for the integral (16) with the function p ( l )  
and the following parameter values. p ( 5 )  = ~l/ L, K = -0.3, L = 2, Po = 0.990, n, = n2 = 0.2. 
( b )  Saddle points l,, -ls, l,* and -l,*, branch point ivb, and corresponding branch cut of 
F ( l ;  a), and contour of integration C, for the integral (16) with the function p ( [ )  and 
the following parameter values. p ( l )  = ~ [ l  -cos(2~rl /L)] ,  K = -0.3, L =  2, po=0.990, 
n ,  = n2 =0.2. [ =  [+iv.  

Table 1. Comparison of the relative errors in '10 committed by representing the integral 
equation (16) with (18) asymptotically to first and second order. Throughout, K, Po and 
n2 have been chosen to be -0.6, 0.99 and lo-', respectively, and wo = [ F( L/2; a)]-', with 
L =  1. 

Relative error of asymptotic 
expansion up to order 

10' x n, W / W O  O ( d )  O( w - 2 )  

2.5 8 
16 
32 

4.5 8 
16 
32 

6.5 8 
16 
32 

8.5 8 
16 
32 

1.6391 0.5591 
1.2134 0.1966 
1.0457 0.0422 
1.6444 0.5510 
1.2247 0.1941 
1.065 1 0.0470 
1.6494 0.5422 
1.2340 0.1980 
1.0787 0.0480 
1.6545 0.5334 
1.2432 0.1847 
1.0907 0.0479 

the pertinent asymptotic series. The second point is that down to rather small values 
of w, the expansion (15) alone suffices to represent the original integral uniformly to 
within a satisfactory numerical accuracy. 

Another physically interesting case is characterised by the vector potential 

P ( 5 )  = K [ 1  -cos(24/L)1,  (19) 

which in view of & , / I K I  > 1 gives rise to branch points of F ( l ;  (U) at l,,, determined by 

cos(2Tlb/L)= 1 * P o / K ,  

one of which is situated at &, = iqb, say, q b >  0, on the imaginary axis of the 5 plane. 
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The corresponding contour turns out to extend from 5 = 0 to the branch point [b = iqb, 
which at first sight may seem to render the formalism inapplicable that leads to an 
expansion of the type (15).  However, since Re[iF(S; a)]+ -a as 5-*iqb, we arrive 
at practically the same numerical value for I ( w ;  a; 0) by terminating the integration 
at i (qb-S) ,  a<< 1, so that now F ( 5 ;  a) is analytic everywhere on this ‘truncated’ 
contour of integration, in keeping with the requirements formulated above. 

Insertion of (19) into (17) shows that there are now two pairs of saddle points, 
which for appropriate parameter values may indefinitely approach the origin of the 
plane and thus the endpoint of the contour of integration C. These four saddle points 
require the replacement of (12) by (13) and, by arguments completely analogous to 
those leading from (12) to (15), we arrive at an asymptotic expansion of the type (15) 
that, in contrast to (15), involves four canonical integrals r,. n = 0, 1 ,2 ,3 .  These are 
given by (lo),  if P is interpreted as a polynomial of degree five, and could be named, 
with reference to Connor et al (1984), incomplete canonical swallowtail integrals. 

As should be expected, a comparison analogous to that made in table 1 shows this 
series to be as satisfactory an asymptotic representation for the case of four saddle 
points coalescing with an endpoint of the contour of integration, as is (15)  for the case 
of two such saddle points, and similar results can be anticipated for even more general 
cases. For reasons given, the series expansions (12) and (13) and their generalisations, 
therefore, constitute a useful alternative to Bleistein’s (1967) method. 
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